August 11, 2016
In this paper, we propose a method which uses semi-supervised convolutional neural networks (CNNs) to select in-domain training data for statistical machine translation. This approach is particularly effective when only tiny amounts of in-domain data are available. The in-domain data and randomly sampled general-domain data are used to train a data selection model with semi-supervised CNN, then this model computes domain relevance scores for all the sentences in the general domain dataset. The sentence pairs with top scores are selected to train the system. We carry out experiments on 4 language directions with three test domains. Compared with strong baseline systems trained with large amount of data, this method can improve the performance up to 3.1 BLEU. Its performances are significant better than three state-of-the-art language model based data selection methods. We also show that the in-domain data used to train the selection model could be as few as 100 sentences, which makes fine grained topic-dependent translation adaptation possible.
Research Topics
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Our approach
Latest news
Foundational models