SPEECH & AUDIO

NLP

Self-Supervised Representations Improve End-to-End Speech Translation

October 26, 2020

Abstract

End-to-end speech-to-text translation can provide a simpler and smaller system but is facing the challenge of data scarcity. Pre-training methods can leverage unlabeled data and have been shown to be effective on data-scarce settings. In this work, we explore whether self-supervised pre-trained speech representations can benefit the speech translation task in both high- and low-resource settings, whether they can transfer well to other languages, and whether they can be effectively combined with other common methods that help improve low-resource end-to-end speech translation such as using a pre-trained high-resource speech recognition system. We demonstrate that self-supervised pre-trained features can consistently improve the translation performance, and cross-lingual transfer allows to extend to a variety of languages without or with little tuning.

Download the Paper

AUTHORS

Written by

Anne Wu

Changhan Wang

Jiatao Gu

Juan Miguel Pino

Publisher

Interspeech

Related Publications

December 17, 2024

NLP

FLAME : Factuality-Aware Alignment for Large Language Models

Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen

December 17, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.