CORE MACHINE LEARNING

Self-Supervised Learning of Split Invariant Equivariant Representations

June 27, 2023

Abstract

Recent progress has been made towards learning invariant or equivariant representations with self-supervised learning. While invariant methods are evaluated on large scale datasets, equivariant ones are evaluated in smaller, more controlled, settings. We aim at bridging the gap between the two in order to learn more diverse representations that are suitable for a wide range of tasks. We start by introducing a dataset called 3DIEBench, consisting of renderings from 3D models over 55 classes and more than 2.5 million images where we have full control on the transformations applied to the objects. We further introduce a predictor architecture based on hypernetworks to learn equivariant representations with no possible collapse to invariance. We introduce SIE (\textbf{S}plit \textbf{I}nvariant-\textbf{E}quivariant) which combines the hypernetwork-based predictor with representations split in two parts, one invariant, the other equivariant, to learn richer representations. We demonstrate significant performance gains over existing methods on equivariance related tasks from both a qualitative and quantitative point of view. We further analyze our introduced predictor and show how it steers the learned latent space. We hope that both our introduced dataset and approach will enable learning richer representations without supervision in more complex scenarios. Code and data are available at https://github.com/facebookresearch/SIE .

Download the Paper

AUTHORS

Written by

Quentin Garrido

Laurent Najman

Yann LeCun

Publisher

ICML

Research Topics

Core Machine Learning

Related Publications

August 12, 2024

CORE MACHINE LEARNING

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Arman Zharmagambetov, Yuandong Tian, Aaron Ferber, Bistra Dilkina, Taoan Huang

August 12, 2024

August 09, 2024

CORE MACHINE LEARNING

Benchmarking Attacks on Learning with Errors

Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter

August 09, 2024

August 02, 2024

CORE MACHINE LEARNING

GenCO: Generating Diverse Designs with Combinatorial Constraints

Arman Zharmagambetov, Yuandong Tian

August 02, 2024

July 29, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Factorizing Text-to-Video Generation by Explicit Image Conditioning

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Saketh Rambhatla, Mian Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra

July 29, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.