RESEARCH

COMPUTER VISION

Self-supervised Feature Learning for Semantic Segmentation of Overhead Imagery

September 04, 2018

Abstract

Overhead imageries play a crucial role in many applications such as urban planning, crop yield forecasting, mapping, and policy making. Semantic segmentation could enable automatic, efficient, and large-scale understanding of overhead imageries for these applications. However, semantic segmentation of overhead imageries is a challenging task, primarily due to the large domain gap from existing research in ground imageries, unavailability of large-scale dataset with pixel-level annotations, and inherent complexity in the task. Readily available vast amount of unlabeled overhead imageries share more common structures and patterns compared to the ground imageries, therefore, its large-scale analysis could benefit from unsupervised feature learning techniques. In this work, we study various self-supervised feature learning techniques for semantic segmentation of overhead imageries. We choose image semantic inpainting as a self-supervised task [36] for our experiments due to its proximity to the semantic segmentation task. We (i) show that existing approaches are inefficient for semantic segmentation, (ii) propose architectural changes towards self-supervised learning for semantic segmentation, (iii) propose an adversarial training scheme for self-supervised learning by increasing the pretext task’s difficulty gradually and show that it leads to learning better features, and (iv) propose a unified approach for overhead scene parsing, road network extraction, and land cover estimation. Our approach improves over training from scratch by more than 10% and ImageNet pre-trained network by more than 5% mIOU.

Download the Paper

AUTHORS

Written by

Anil Batra

Guan Pang

Manohar Paluri

Saikat Basu

Lorenzo Torresani

C.V. Jawahar

Suriya Singh

Publisher

BMVC

Research Topics

Computer Vision

Related Publications

February 27, 2025

INTEGRITY

THEORY

Logic.py: Bridging the Gap between LLMs and Constraint Solvers

Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral

February 27, 2025

February 07, 2025

RESEARCH

SPEECH & AUDIO

Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu

February 07, 2025

February 06, 2025

RESEARCH

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

RESEARCH

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.