RESEARCH

COMPUTER VISION

Self-supervised Feature Learning for Semantic Segmentation of Overhead Imagery

September 04, 2018

Abstract

Overhead imageries play a crucial role in many applications such as urban planning, crop yield forecasting, mapping, and policy making. Semantic segmentation could enable automatic, efficient, and large-scale understanding of overhead imageries for these applications. However, semantic segmentation of overhead imageries is a challenging task, primarily due to the large domain gap from existing research in ground imageries, unavailability of large-scale dataset with pixel-level annotations, and inherent complexity in the task. Readily available vast amount of unlabeled overhead imageries share more common structures and patterns compared to the ground imageries, therefore, its large-scale analysis could benefit from unsupervised feature learning techniques. In this work, we study various self-supervised feature learning techniques for semantic segmentation of overhead imageries. We choose image semantic inpainting as a self-supervised task [36] for our experiments due to its proximity to the semantic segmentation task. We (i) show that existing approaches are inefficient for semantic segmentation, (ii) propose architectural changes towards self-supervised learning for semantic segmentation, (iii) propose an adversarial training scheme for self-supervised learning by increasing the pretext task’s difficulty gradually and show that it leads to learning better features, and (iv) propose a unified approach for overhead scene parsing, road network extraction, and land cover estimation. Our approach improves over training from scratch by more than 10% and ImageNet pre-trained network by more than 5% mIOU.

Download the Paper

AUTHORS

Written by

Anil Batra

Guan Pang

Manohar Paluri

Saikat Basu

Lorenzo Torresani

C.V. Jawahar

Suriya Singh

Publisher

BMVC

Research Topics

Computer Vision

Related Publications

November 20, 2024

CONVERSATIONAL AI

COMPUTER VISION

Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations

Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti

November 20, 2024

November 11, 2024

COMPUTER VISION

HOI-Swap: Swapping Objects in Videos with Hand-Object Interaction Awareness

Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman

November 11, 2024

October 31, 2024

HUMAN & MACHINE INTELLIGENCE

ROBOTICS

Digitizing Touch with an Artificial Multimodal Fingertip

Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra

October 31, 2024

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.