September 04, 2018
Overhead imageries play a crucial role in many applications such as urban planning, crop yield forecasting, mapping, and policy making. Semantic segmentation could enable automatic, efficient, and large-scale understanding of overhead imageries for these applications. However, semantic segmentation of overhead imageries is a challenging task, primarily due to the large domain gap from existing research in ground imageries, unavailability of large-scale dataset with pixel-level annotations, and inherent complexity in the task. Readily available vast amount of unlabeled overhead imageries share more common structures and patterns compared to the ground imageries, therefore, its large-scale analysis could benefit from unsupervised feature learning techniques. In this work, we study various self-supervised feature learning techniques for semantic segmentation of overhead imageries. We choose image semantic inpainting as a self-supervised task [36] for our experiments due to its proximity to the semantic segmentation task. We (i) show that existing approaches are inefficient for semantic segmentation, (ii) propose architectural changes towards self-supervised learning for semantic segmentation, (iii) propose an adversarial training scheme for self-supervised learning by increasing the pretext task’s difficulty gradually and show that it leads to learning better features, and (iv) propose a unified approach for overhead scene parsing, road network extraction, and land cover estimation. Our approach improves over training from scratch by more than 10% and ImageNet pre-trained network by more than 5% mIOU.
Publisher
BMVC
Research Topics
November 20, 2024
Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti
November 20, 2024
November 11, 2024
Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman
November 11, 2024
October 31, 2024
Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra
October 31, 2024
October 16, 2024
Movie Gen Team
October 16, 2024
Foundational models
Latest news
Foundational models