Research

Segmentation-Aware Convolutional Networks using Local Attention Masks

October 22, 2017

Abstract

We introduce an approach to integrate segmentation information within a convolutional neural network (CNN). This counter-acts the tendency of CNNs to smooth information across regions and increases their spatial precision. To obtain segmentation information, we set up a CNN to provide an embedding space where region co-membership can be estimated based on Euclidean distance. We use these embeddings to compute a local attention mask relative to every neuron position. We incorporate such masks in CNNs and replace the convolution operation with a “segmentation-aware” variant that allows a neuron to selectively attend to inputs coming from its own region. We call the resulting network a segmentation-aware CNN because it adapts its filters at each image point according to local segmentation cues, while at the same time remaining fully-convolutional. We demonstrate the merit of our method on two widely different dense prediction tasks, that involve classification (semantic segmentation) and regression (optical flow). Our results show that in semantic segmentation we can replace DenseCRF inference with a cascade of segmentation-aware filters, and in optical flow we obtain clearly sharper responses than the ones obtained with comparable networks that do not use segmentation. In both cases segmentation-aware convolution yields systematic improvements over strong baselines.

Download the Paper

Related Publications

June 11, 2025

Computer Vision

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 10, 2025

Computer Vision

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 10, 2025

June 10, 2025

Robotics

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 10, 2025

May 14, 2025

Core Machine Learning

UMA: A Family of Universal Models for Atoms

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick

May 14, 2025

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.