November 16, 2020
This paper introduces a conceptually simple, scalable, and highly effective BERT-based en- tity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algo- rithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross- encoder, that concatenates the mention and en- tity text. Experiments demonstrate that this approach is state of the art on recent zero- shot benchmarks (6 point absolute gains) and also on more established non-zero-shot eval- uations (e.g. TACKBP-2010), despite its rel- ative simplicity (e.g. no explicit entity em- beddings or manually engineered mention ta- bles). We also show that bi-encoder link- ing is very fast with nearest neighbour search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the ac- curacy gain from the more expensive cross- encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at https://github. com/facebookresearch/BLINK.
Publisher
EMNLP
Research Topics
March 13, 2025
Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung
March 13, 2025
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates
February 07, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
Foundational models
Our approach
Latest news
Foundational models