RESEARCH

NLP

Scalable Zero-shot Entity Linking with Dense Entity Retrieval

November 16, 2020

Abstract

This paper introduces a conceptually simple, scalable, and highly effective BERT-based en- tity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algo- rithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross- encoder, that concatenates the mention and en- tity text. Experiments demonstrate that this approach is state of the art on recent zero- shot benchmarks (6 point absolute gains) and also on more established non-zero-shot eval- uations (e.g. TACKBP-2010), despite its rel- ative simplicity (e.g. no explicit entity em- beddings or manually engineered mention ta- bles). We also show that bi-encoder link- ing is very fast with nearest neighbour search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the ac- curacy gain from the more expensive cross- encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at https://github. com/facebookresearch/BLINK.

Download the Paper

AUTHORS

Written by

Ledell Wu

Fabio Petroni

Luke Zettlemoyer

Sebastian Riedel

Martin Josifoski

Publisher

EMNLP

Related Publications

March 13, 2025

NLP

COMPUTER VISION

Subobject-level Image Tokenization

Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung

March 13, 2025

February 27, 2025

INTEGRITY

THEORY

Logic.py: Bridging the Gap between LLMs and Constraint Solvers

Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral

February 27, 2025

February 07, 2025

NLP

BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation

The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates

February 07, 2025

February 07, 2025

RESEARCH

SPEECH & AUDIO

Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu

February 07, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.