RESEARCH

NLP

RTFM: Generalizing to Novel Environment via Reading

March 03, 2020

Abstract

Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2π, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2π generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2π produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.

Download the Paper

AUTHORS

Written by

Edward Grefenstette

Tim Rocktäschel

Victor Zhong

Publisher

ICLR

Related Publications

May 24, 2024

SPEECH & AUDIO

NLP

DOC-RAG: ASR Language Model Personalization with Domain-Distributed Co-occurrence Retrieval Augmentation

Zhe Liu

May 24, 2024

April 22, 2024

NLP

Text Quality-Based Pruning for Efficient Training of Language Models

Vasu Sharma *, Karthik Padthe *, Newsha Ardalani, Kushal Tirumala, Russ Howes, Hu Xu, Bernie Huang, Daniel Li (FAIR), Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer

April 22, 2024

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

April 05, 2024

CONVERSATIONAL AI

NLP

MART: Improving LLM Safety with Multi-round Automatic Red-Teaming

Suyu Ge, Chunting Zhou, Rui Hou, Madian Khabsa, Yi-Chia Wang, Qifan Wang, Jiawei Han, Yuning Mao

April 05, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.