RESEARCH

NLP

RTFM: Generalizing to Novel Environment via Reading

March 03, 2020

Abstract

Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2π, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2π generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2π produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.

Download the Paper

AUTHORS

Written by

Edward Grefenstette

Tim Rocktäschel

Victor Zhong

Publisher

ICLR

Related Publications

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

December 11, 2024

NLP

Large Concept Models: Language Modeling in a Sentence Representation Space

The LCM team, Loic Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussa, David Dale, Hady Elsahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Ropers, Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, Holger Schwenk

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.