Core Machine Learning

Computer Vision

Robust Audio-Visual Instance Discrimination

June 19, 2021

Abstract

We present a self-supervised learning method to learn audio and video representations. Prior work uses the natural correspondence between audio and video to define a standard cross-modal instance discrimination task, where a model is trained to match representations from the two modalities. However, the standard approach introduces two sources of training noise. First, audio-visual correspondences often produce faulty positives since the audio and video signals can be uninformative of each other. To limit the detrimental impact of faulty positives, we optimize a weighted contrastive learning loss, which down-weighs their contribution to the overall loss. Second, since self- supervised contrastive learning relies on random sampling of negative instances, instances that are semantically similar to the base instance can be used as faulty negatives. To alleviate the impact of faulty negatives, we propose to optimize an instance discrimination loss with a soft target distribution that estimates relationships between instances. We validate our contributions through extensive experiments on action recognition tasks and show that they address the problems of audio-visual instance discrimination and improve transfer learning performance.

Download the Paper

AUTHORS

Written by

Pedro Morgado

Ishan Misra

Nuno Vasconcelos

Publisher

CVPR 2021

Research Topics

Computer Vision

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.