Core Machine Learning

Riemannian Convex Potential Maps

July 18, 2021

Abstract

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited by representational and computational tradeoffs. We propose and study a class of flows that uses convex potentials from Riemannian optimal transport. These are universal and can model distributions on any compact Riemannian manifold without requiring domain knowledge of the manifold to be integrated into the architecture. We demonstrate that these flows can model standard distributions on spheres, and tori, on synthetic and geological data.

Download the Paper

AUTHORS

Written by

Samuel Cohen

Brandon Amos

Yaron Lipman

Publisher

ICML 2021

Research Topics

Core Machine Learning

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 08, 2022

Theory

Beyond neural scaling laws: beating power law scaling via data pruning

Ari Morcos, Shashank Shekhar, Surya Ganguli, Ben Sorscher, Robert Geirhos

November 08, 2022

August 08, 2022

Core Machine Learning

Opacus: User-Friendly Differential Privacy Library in PyTorch

Ashkan Yousefpour, Akash Bharadwaj, Alex Sablayrolles, Graham Cormode, Igor Shilov, Ilya Mironov, Jessica Zhao, John Nguyen, Karthik Prasad, Mani Malek, Sayan Ghosh

August 08, 2022

December 07, 2020

Core Machine Learning

Adversarial Example Games

Avishek Joey Bose, Gauthier Gidel, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton

December 07, 2020

November 03, 2020

Core Machine Learning

Robust Embedded Deep K-means Clustering

Rui Zhang, Hanghang Tong Yinglong Xia, Yada Zhu

November 03, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.