January 29, 2019
Reinforcement Learning (RL) agents require the specification of a reward signal for learning behaviours. However, introduction of corrupt or stochastic rewards can yield high variance in learning. Such corruption may be a direct result of goal misspecification, randomness in the reward signal, or correlation of the reward with external factors that are not known to the agent. Corruption or stochasticity of the reward signal can be especially problematic in robotics, where goal specification can be particularly difficult for complex tasks. While many variance reduction techniques have been studied to improve the robustness of the RL process, handling such stochastic or corrupted reward structures remains difficult. As an alternative for handling this scenario in model-free RL methods, we suggest using an estimator for both rewards and value functions. We demonstrate that this improves performance under corrupted stochastic rewards in both the tabular and non-linear function approximation settings for a variety of noise types and environments. The use of reward estimation is a robust and easy-to-implement improvement for handling corrupted reward signals in model-free RL.
Publisher
CoRL
November 28, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 28, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
Foundational models
Latest news
Foundational models