October 25, 2019
Theory of mind, i.e., the ability to reason about intents and beliefs of agents is an important task in artificial intelligence and central to resolving ambiguous references in natural language dialogue. In this work, we revisit the evaluation of theory of mind through question answering. We show that current evaluation methods are flawed and that existing benchmark tasks can be solved without theory of mind due to dataset biases. Based on prior work, we propose an improved evaluation protocol and dataset in which we explicitly control for data regularities via a careful examination of the answer space. We show that state-of-the-art methods which are successful on existing benchmarks fail to solve theory-of-mind tasks in our proposed approach.
Publisher
EMNLP
Research Topics
November 20, 2024
Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra
November 20, 2024
November 19, 2024
Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin
November 19, 2024
November 14, 2024
Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si
November 14, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
Foundational models
Latest news
Foundational models