CORE MACHINE LEARNING

Revisiting Graph Neural Networks for Link Prediction

December 06, 2021

Abstract

In this paper, we theoretically characterize graph neural network’s representation power for high-order node set prediction problems (where a prediction is made over a set of more than 1 node). In particular, we focus on one most important second-order task—link prediction. There are two representative classes of GNN methods for link prediction: GAE and SEAL. GAE (Graph Autoencoder) first applies a GNN to the whole graph, and then aggregates the representations of the source and target nodes as their link representation. SEAL extracts a subgraph around the source and target nodes, labels the nodes in the subgraph, and then uses a GNN to learn a link representation from the labeled subgraph. At first glance, both GAE and SEAL use a GNN. However, their performance gap can be very large. On the recent Open Graph Benchmark datasets, SEAL achieved 3 first places out of 4 datasets, outperforming the best GAE method by up to 195% in Hits@100. In this paper, by studying this performance gap between GAE and SEAL, we first point out a key limitation of GAE caused by directly aggregating two node representations as a link representation. To address this limitation, we propose the labeling trick. Labeling trick unifies several recent successes to improve GNNs’ representation power, such as SEAL, Distance Encoding, and Identity-aware GNN, into a single and most basic form. We prove that with labeling trick a sufficiently expressive GNN can learn the most expressive structural representations for node sets. Our work establishes a theoretical foundation for using GNNs for high-order node set prediction.

AUTHORS

Written by

Yinglong Xia

Kai Wang

Long Jin

Muhan Zhang

Pan Li

Publisher

NeurIPS

Research Topics

Core Machine Learning

Related Publications

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

November 06, 2024

THEORY

CORE MACHINE LEARNING

The Road Less Scheduled

Aaron Defazio, Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky

November 06, 2024

August 16, 2024

THEORY

REINFORCEMENT LEARNING

Dual Approximation Policy Optimization

Zhihan Xiong, Maryam Fazel, Lin Xiao

August 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.