April 24, 2017
The goal of two-sample tests is to decide whether two probability distributions, denoted by P and Q, are equal. One alternative to construct flexible two-sample tests is to use binary classifiers. More specifically, pair n random samples drawn from P with a positive label, and pair n random samples drawn from Q with a negative label. Then, the test accuracy of a binary classifier on these data should remain near chance-level if the null hypothesis “P = Q” is true. Furthermore, such test accuracy is an average of independent random variables, and thus approaches a Gaussian null distribution. Furthermore, the prediction uncertainty of our binary classifier can be used to interpret the particular differences between P and Q. In particular, analyze which samples were correctly or incorrectly labeled by the classifier, with the least or most confidence.
In this paper, we aim to revive interest in the use of binary classifiers for two-sample testing. To this end, we review their fundamentals, previous literature on their use, compare their performance against alternative state-of-the-art two-sample tests, and propose them to evaluate generative adversarial network models applied to image synthesis.
As a by-product of our research, we propose the application of conditional generative adversarial networks, together with classifier two-sample tests, as an alternative to achieve state-of-the-art causal discovery.
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models