NLP

Reverse Training to Nurse the Reversal Curse

July 23, 2024

Abstract

Large language models (LLMs) have a surprising failure: when trained on “A has a feature B”, they do not generalize to “B is a feature of A”, which is termed the Reversal Curse. Even when training with trillions of tokens this issue still appears due to Zipf’s law – hence even if we train on the entire internet. This work proposes an alternative training scheme, called reverse training, whereby all words are used twice, doubling the amount of available tokens. The LLM is trained in both forward and reverse directions by reversing training strings while preserving (i.e., not reversing) chosen substrings, such as entities. We show that data-matched reverse-trained models provide superior performance to standard models on standard tasks, and compute-matched reverse-trained models provide far superior performance on reversal tasks, helping resolve the reversal curse issue.

Download the Paper

AUTHORS

Publisher

COLM

Related Publications

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

August 20, 2024

CONVERSATIONAL AI

NLP

Lumos : Empowering Multimodal LLMs with Scene Text Recognition

Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar

August 20, 2024

August 11, 2024

NLP

LM Transparency Tool: Interactive Tool for Analyzing Transformer Language Models

Igor Tufanov, Karen Hambardzumyan, Javier Ferrando, Lena Voita

August 11, 2024

August 11, 2024

NLP

MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector

Marta R. Costa-jussa, Mariano Coria Meglioli, Pierre Andrews, David Dale, Kae Hansanti, Elahe Kalbassi, Christophe Ropers, Carleigh Wood

August 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.