NLP

Reverse Training to Nurse the Reversal Curse

July 23, 2024

Abstract

Large language models (LLMs) have a surprising failure: when trained on “A has a feature B”, they do not generalize to “B is a feature of A”, which is termed the Reversal Curse. Even when training with trillions of tokens this issue still appears due to Zipf’s law – hence even if we train on the entire internet. This work proposes an alternative training scheme, called reverse training, whereby all words are used twice, doubling the amount of available tokens. The LLM is trained in both forward and reverse directions by reversing training strings while preserving (i.e., not reversing) chosen substrings, such as entities. We show that data-matched reverse-trained models provide superior performance to standard models on standard tasks, and compute-matched reverse-trained models provide far superior performance on reversal tasks, helping resolve the reversal curse issue.

Download the Paper

AUTHORS

Publisher

COLM

Related Publications

December 17, 2024

NLP

FLAME : Factuality-Aware Alignment for Large Language Models

Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen

December 17, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.