June 12, 2024
Vector quantization is a fundamental operation for data compression and vector search. To obtain high accuracy, multi-codebook methods represent each vector using codewords across several codebooks. Residual quantization (RQ) is one such method, which iteratively quantizes the error of the previous step. While the error distribution is dependent on previously-selected codewords, this dependency is not accounted for in conventional RQ as it uses a fixed codebook per quantization step. In this paper, we propose QINCo, a neural RQ variant that constructs specialized codebooks per step that depend on the approximation of the vector from previous steps. Experiments show that QINCo outperforms state-of-the-art methods by a large margin on several datasets and code sizes. For example, QINCo achieves better nearest-neighbor search accuracy using 12-byte codes than the state-of-the-art UNQ using 16 bytes on the BigANN1M and Deep1M datasets.
Publisher
ICML
Research Topics
Core Machine Learning
November 20, 2024
Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra
November 20, 2024
November 14, 2024
Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si
November 14, 2024
November 06, 2024
Aaron Defazio, Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky
November 06, 2024
August 16, 2024
Zhihan Xiong, Maryam Fazel, Lin Xiao
August 16, 2024
Foundational models
Latest news
Foundational models