Research

Residual Connections Encourage Iterative Inference

April 30, 2018

Abstract

Residual networks (Resnets) have become a prominent architecture in deep learning. However, a comprehensive understanding of Resnets is still a topic of ongoing research. A recent view argues that Resnets perform iterative refinement of features. We attempt to further expose properties of this aspect. To this end, we study Resnets both analytically and empirically. We formalize the notion of iterative refinement in Resnets by showing that residual connections naturally encourage features of residual blocks to move along the negative gradient of loss as we go from one block to the next. In addition, our empirical analysis suggests that Resnets are able to perform both representation learning and iterative refinement. In general, a Resnet block tends to concentrate representation learning behavior in the first few layers while higher layers perform iterative refinement of features. Finally we observe that sharing residual layers naively leads to representation explosion and counterintuitively, overfitting, and we show that simple existing strategies can help alleviating this problem.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.