Research

Representing Documents Through Their Readers

August 11, 2013

Abstract

From Twitter to Facebook to Reddit, users have become accustomed to sharing the articles they read with friends or followers on their social networks. While previous work has modeled what these shared stories say about the user who shares them, the converse question remains unexplored: what can we learn about an article from the identities of its likely readers?

To address this question, we model the content of news articles and blog posts by attributes of the people who are likely to share them. For example, many Twitter users describe themselves in a short profile, labeling themselves with phrases such as “vegetarian” or “liberal.” By assuming that a user’s labels correspond to topics in the articles he shares, we can learn a labeled dictionary from a training corpus of articles shared on Twitter. Thereafter, we can code any new document as a sparse non-negative linear combination of user labels, where we encourage correlated labels to appear together in the output via a structured sparsity penalty.

Finally, we show that our approach yields a novel document representation that can be effectively used in many problem settings, from recommendation to modeling news dynamics. For example, while the top politics stories will change drastically from one month to the next, the “politics” label will still be there to describe them. We evaluate our model on millions of tweeted news articles and blog posts collected between September 2010 and September 2012, demonstrating that our approach is effective.

Download the Paper

Related Publications

May 14, 2025

Core Machine Learning

UMA: A Family of Universal Models for Atoms

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick

May 14, 2025

May 13, 2025

Human & Machine Intelligence

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

May 13, 2025

April 25, 2025

NLP

ReasonIR: Training Retrievers for Reasoning Tasks

Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer

April 25, 2025

April 17, 2025

Human & Machine Intelligence

Conversational AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.