December 1, 2019
We consider the problem of online reinforcement learning when several state representations (mapping histories to a discrete state space) are available to the learning agent. At least one of these representations is assumed to induce a Markov decision process (MDP), and the performance of the agent is measured in terms of cumulative regret against the optimal policy giving the highest average reward in this MDP representation. We propose an algorithm (UCB-MS) with Õ(√T) regret in any communicating MDP. The regret bound shows that UCB-MS automatically adapts to the Markov model and improves over the currently known best bound of order Õ(T2/3).
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 16, 2025
Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier
April 16, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
March 24, 2025
Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi
March 24, 2025
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Our approach
Latest news
Foundational models