Research

Regression-aware decompositions

December 17, 2018

Abstract

Linear least-squares regression with a “design” matrix A approximates a given matrix B via minimization of the spectral- or Frobenius-norm discrepancy ||AX − B|| over every conformingly sized matrix X. Also popular is low-rank approximation to B through the “interpolative decomposition,” which traditionally has no supervision from any auxiliary matrix A. The traditional interpolative decomposition selects certain columns of B and constructs numerically stable (multi)linear interpolation from those columns to all columns of B, thus approximating all of B via the chosen columns. Accounting for regression with an auxiliary matrix A leads to a “regression-aware interpolative decomposition,” which selects certain columns of B and constructs numerically stable (multi)linear interpolation from the corresponding least-squares solutions to the least-squares solutions X minimizing ||AX − B|| for all columns of B. The regression-aware decompositions reveal the structure inherent in B that is relevant to regression against A; they effectively enable supervision to inform classical dimensionality reduction, which classically has been restricted to strictly unsupervised learning.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.