RESEARCH

COMPUTER VISION

Reducing Uncertainty in Undersampled MRI Reconstruction with Active Acquisition

May 10, 2019

Abstract

The goal of MRI reconstruction is to restore a high fidelity image from partially observed measurements. This partial view naturally induces reconstruction uncertainty that can only be reduced by acquiring additional measurements. In this paper, we present a novel method for MRI reconstruction that, at inference time, dynamically selects the measurements to take and iteratively refines the prediction in order to best reduce the reconstruction error and, thus, its uncertainty. We validate our method on a large scale knee MRI dataset, as well as on ImageNet. Results show that (1) our system successfully outperforms active acquisition baselines; (2) our uncertainty estimates correlate with error maps; and (3) our ResNet-based architecture surpasses standard pixel-to-pixel models in the task of MRI reconstruction. The proposed method not only shows high-quality reconstructions but also paves the road towards more applicable solutions for accelerating MRI.

Download the Paper

AUTHORS

Written by

Michal Drozdzal

Adriana Romero Soriano

Pascal Vincent

Lin Yang

Matthiew Muckley

Zizhao Zhang

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

September 30, 2023

INTEGRITY

COMPUTER VISION

The Stable Signature: Rooting Watermarks in Latent Diffusion Models

Pierre Fernandez, Guillaume Couairon, Hervé Jegou, Matthijs Douze, Teddy Furon

September 30, 2023

September 29, 2023

COMPUTER VISION

Among Us: Adversarially Robust Collaborative Perception by Consensus

Yiming Li, Qi Fang, Jiamu Bai, Siheng Chen, Felix Xu, Chen Feng

September 29, 2023

September 27, 2023

COMPUTER VISION

Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack

Xiaoliang Dai, Ji Hou, Kevin Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue (R) Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yiwen Song, Yi Wen, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh

September 27, 2023

September 22, 2023

COMPUTER VISION

CORE MACHINE LEARNING

Common Corruption Robustness of Point Cloud Detectors: Benchmark and Enhancement

Shuangzhi Li, Zhijie Wang, Felix Xu, Qing Guo, Xingyu Li, Lei Ma

September 22, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.