RESEARCH

ML APPLICATIONS

Reducing Transformer Depth on Demand with Structured Dropout

April 21, 2020

Abstract

Overparameterized transformer networks have obtained state of the art results in various natural language processing tasks, such as machine translation, language modeling, and question answering. These models contain hundreds of millions of parameters, necessitating a large amount of computation and making them prone to overfitting. In this work, we explore LayerDrop, a form of structured dropout, which has a regularization effect during training and allows for efficient pruning at inference time. In particular, we show that it is possible to select sub-networks of any depth from one large network without having to finetune them and with limited impact on performance. We demonstrate the effectiveness of our approach by improving the state of the art on machine translation, language modeling, summarization, question answering, and language understanding benchmarks. Moreover, we show that our approach leads to small BERT-like models of higher quality compared to training from scratch or using distillation.

Download the Paper

AUTHORS

Written by

Angela Fan

Armand Joulin

Edouard Grave

Publisher

ICLR

Related Publications

November 28, 2022

RESEARCH

CORE MACHINE LEARNING

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 28, 2022

November 27, 2022

RESEARCH

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 23, 2022

THEORY

CORE MACHINE LEARNING

Generalization Bounds for Deep Transfer Learning Using Majority Predictor Accuracy

Tal Hassner, Cuong N. Nguyen, Cuong V. Nguyen, Lam Si Tung Ho, Vu Dinh

November 23, 2022

November 16, 2022

RESEARCH

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.