July 17, 2021
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down. While most of the bits have been corrupted, many bits, at random locations, have not. Since the keys in many encryption schemes are being expanded in memory into longer keys with fixed redundancies, the keys can often be restored. In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys. Even though AES consists of Rijndael S-box elements, that are specifically designed to be resistant to linear and differential cryptanalysis, our method provides a novel formalization of the AES key scheduling as a computational graph, which is implemented by a neural message passing network. Our results show that our methods outperform the state of the art attack methods by a very large margin.
Publisher
ICML 2021
Research Topics
Core Machine Learning
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 08, 2022
Ari Morcos, Shashank Shekhar, Surya Ganguli, Ben Sorscher, Robert Geirhos
November 08, 2022
August 08, 2022
Ashkan Yousefpour, Akash Bharadwaj, Alex Sablayrolles, Graham Cormode, Igor Shilov, Ilya Mironov, Jessica Zhao, John Nguyen, Karthik Prasad, Mani Malek, Sayan Ghosh
August 08, 2022
December 07, 2020
Avishek Joey Bose, Gauthier Gidel, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton
December 07, 2020
November 03, 2020
Rui Zhang, Hanghang Tong Yinglong Xia, Yada Zhu
November 03, 2020
Foundational models
Latest news
Foundational models