September 03, 2018
Deep learning for predicting or generating 3D human pose sequences is an active research area. Previous work regresses either joint rotations or joint positions. The former strategy is prone to error accumulation along the kinematic chain, as well as discontinuities when using Euler angle or exponential map parameterizations. The latter requires re-projection onto skeleton constraints to avoid bone stretching and invalid configurations. This work addresses both limitations. Our recurrent network, QuaterNet, represents rotations with quaternions and our loss function performs forward kinematics on a skeleton to penalize absolute position errors instead of angle errors. On short-term predictions, QuaterNet improves the state-of-the-art quantitatively. For long-term generation, our approach is qualitatively judged as realistic as recent neural strategies from the graphics literature.
Publisher
BMVC
October 16, 2024
Movie Gen Team
October 16, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
September 26, 2024
Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa
September 26, 2024
August 23, 2024
Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria
August 23, 2024
Foundational models
Latest news
Foundational models