COMPUTER VISION

Quantization Guided JPEG Artifact Correction

August 18, 2020

Abstract

The JPEG image compression algorithm is the most popular method of image compression because of it’s ability for large compression ratios. However, to achieve such high compression, information is lost. For aggressive quantization settings, this leads to a noticeable reduction in image quality. Artifact correction has been studied in the context of deep neural networks for some time, but the current methods delivering state-of-the-art results require a different model to be trained for each quality setting, greatly limiting their practical application. We solve this problem by creating a novel architecture which is parameterized by the JPEG file’s quantization matrix. This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.

Download the Paper

AUTHORS

Written by

Ser-Nam Lim

Abhinav Shrivasta

Larry Davis

Max Erlich

Publisher

ECCV

Research Topics

Computer Vision

Related Publications

December 12, 2024

COMPUTER VISION

EvalGIM: A Library for Evaluating Generative Image Models

Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano

December 12, 2024

December 11, 2024

COMPUTER VISION

Video Seal: Open and Efficient Video Watermarking

Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko

December 11, 2024

December 11, 2024

NLP

COMPUTER VISION

Meta CLIP 1.2

Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer

December 11, 2024

December 11, 2024

COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.