Quantifying Adaptability in Pre-trained Language Models with 500 Tasks

June 25, 2022

Abstract

When a neural language model (LM) is adapted to perform a new task, what aspects of the task predict the eventual performance of the model? In NLP, systematic features of LM generalization to individual examples are well characterized, but systematic aspects of LM adaptability to new tasks are not nearly as well understood. We present a large-scale empirical study of the features and limits of LM adaptability using a new benchmark, TaskBench500, built from 500 procedurally generated sequence modeling tasks. These tasks combine core aspects of language processing, including lexical semantics, sequence processing, memorization, logical reasoning, and world knowledge. Using TaskBench500, we evaluate three facets of adaptability, finding that: (1) adaptation procedures differ dramatically in their ability to memorize small datasets; (2) within a subset of task types, adaptation procedures exhibit compositional adaptability to complex tasks; and (3) failure to match training label distributions is explained by mismatches in the intrinsic difficulty of predicting individual labels. Our experiments show that adaptability to new tasks, like generalization to new examples, can be systematically described and understood, and we conclude with a discussion of additional aspects of adaptability that could be studied using the new benchmark.

Download the Paper

AUTHORS

Written by

Jane Yu

Alon Halevy

Luke Zettlemoyer

Madian Khabsa

Belinda Li

Jacob Andreas

Publisher

NAACL

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.