December 14, 2018
We introduce PyText1 – a deep learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by providing simple and extensible interfaces for model components, and by using PyTorch’s capabilities of exporting models for inference via the optimized Caffe2 execution engine. We report our own experience of migrating experimentation and production workflows to PyText, which enabled us to iterate faster on novel modeling ideas and then seamlessly ship them at industrial scale.
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
October 16, 2019
Awni Hannun, Adrien Dufraux, Matthijs Douze, Armelle Brun, Emmanuel Vincent
October 16, 2019
July 27, 2019
Pierre-Emmanuel Mazaré, Antoine Bordes, Jason Weston, Braden Hancock
July 27, 2019
June 03, 2019
Adriana Romero Soriano, Dave Meger, Edward Smith, Scott Fujimoto
June 03, 2019
December 04, 2018
Sebastian Schuster, Sonal Gupta, Rushin Shah, Mike Lewis
December 04, 2018
December 13, 2019
Adrien Dufraux, Emmanuel Dupoux, Awni Hannun, Armelle Brun, Matthijs Douze
December 13, 2019
July 28, 2019
Abigail See, Stephen Roller, Douwe Kiela, Jason Weston
July 28, 2019
November 05, 2019
Shane Moon, Pararth Shah, Anuj Kumar, Rajen Subba
November 05, 2019
Our approach
Latest news
Foundational models