January 18, 2024
We present PyMoosh, a Python-based simulation library designed to provide a comprehensive set of numerical tools allowing to compute essentially all optical characteristics of multilayered structures, ranging from reflectance and transmittance to guided modes and photovoltaic efficiency. PyMoosh is designed not just for research purposes, but also for use-cases in education. To this end, we have invested significant effort in ensuring user-friendliness and simplicity of the interface. PyMoosh has been developed in line with the principles of Open Science and taking into account the fact that multilayered structures are increasingly being used as a testing ground for optimization and deep learning approaches. We provide in this paper the theoretical basis at the core of PyMoosh, an overview of its capabilities, as well as a comparison between the different numerical methods implemented in terms of speed and stability. We are convinced such a versatile tool will be useful for the community in many ways.
Written by
Pauline Bennet
Abdourahman Khaireh Walieh
Peter Wiecha
Olivier Teytaud
Antoine Moreau
Publisher
Josa B
Research Topics
Core Machine Learning
May 14, 2025
Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick
May 14, 2025
May 14, 2025
Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King
May 14, 2025
April 04, 2025
Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar
April 04, 2025
January 02, 2025
Shukai Duan, Heng Ping, Nikos Kanakaris, Xiongye Xiao, Panagiotis Kyriakis, Nesreen K. Ahmed, Peiyu Zhang, Guixiang Ma, Mihai Capota, Shahin Nazarian, Theodore L. Willke, Paul Bogdan
January 02, 2025
Our approach
Latest news
Foundational models