RESEARCH

Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration

November 03, 2020

Abstract

There has been growing progress on theoretical analyses for provably efficient learning in MDPs with linear function approximation, but much of the existing work has made strong assumptions to enable exploration by conventional exploration frameworks. Typically these assumptions are stronger than what is needed to find good solutions in the batch setting. In this work, we show how under a more standard notion of low inherent Bellman error, typically employed in least-square value iteration-style algorithms, we can provide strong PAC guarantees on learning a near optimal value function provided that the linear space is sufficiently "explorable". We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function, which is revealed only once learning has completed. If this reward function is also estimated from the samples gathered during pure exploration, our results also provide same-order PAC guarantees on the performance of the resulting policy for this setting.

Download the Paper

AUTHORS

Written by

Alessandro Lazaric

Andrea Zanette

Emma Brunskill

Mykel Kochenderfer

Publisher

NeurIPS

Related Publications

June 27, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset

Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, Praveen Chowdary, Joe Chuang, Antony D'Avirro, Jon Daly, Ning Dong, Mark Duppenthaler, Cynthia Gao, Jeff Girard, Martin Gleize, Sahir Gomez, Hongyu Gong, Srivathsan Govindarajan, Brandon Han, Sen He, Denise Hernandez, Yordan Hristov, Rongjie Huang, Hirofumi Inaguma, Somya Jain, Raj Janardhan, Qingyao Jia, Christopher Klaiber, Dejan Kovachev, Moneish Kumar, Hang Li, Yilei Li, Pavel Litvin, Wei Liu, Guangyao Ma, Jing Ma, Martin Ma, Xutai Ma, Lucas Mantovani, Sagar Miglani, Sreyas Mohan, Louis-Philippe Morency, Evonne Ng, Kam-Woh Ng, Tu Anh Nguyen, Amia Oberai, Benjamin Peloquin, Juan Pino, Jovan Popovic, Omid Poursaeed, Fabian Prada, Alice Rakotoarison, Alexander Richard, Christophe Ropers, Safiyyah Saleem, Vasu Sharma, Alex Shcherbyna, Jie Shen, Anastasis Stathopoulos, Anna Sun, Paden Tomasello, Tuan Tran, Arina Turkatenko, Bo Wan, Chao Wang, Jeff Wang, Mary Williamson, Carleigh Wood, Tao Xiang, Yilin Yang, Zhiyuan Yao, Chen Zhang, Jiemin Zhang, Xinyue Zhang, Jason Zheng, Pavlo Zhyzheria, Jan Zikes, Michael Zollhoefer

June 27, 2025

June 13, 2025

FAIRNESS

INTEGRITY

Measuring multi-calibration

Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert

June 13, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.