RESEARCH

Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration

November 03, 2020

Abstract

There has been growing progress on theoretical analyses for provably efficient learning in MDPs with linear function approximation, but much of the existing work has made strong assumptions to enable exploration by conventional exploration frameworks. Typically these assumptions are stronger than what is needed to find good solutions in the batch setting. In this work, we show how under a more standard notion of low inherent Bellman error, typically employed in least-square value iteration-style algorithms, we can provide strong PAC guarantees on learning a near optimal value function provided that the linear space is sufficiently "explorable". We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function, which is revealed only once learning has completed. If this reward function is also estimated from the samples gathered during pure exploration, our results also provide same-order PAC guarantees on the performance of the resulting policy for this setting.

Download the Paper

AUTHORS

Written by

Alessandro Lazaric

Andrea Zanette

Emma Brunskill

Mykel Kochenderfer

Publisher

NeurIPS

Related Publications

February 27, 2025

INTEGRITY

THEORY

Logic.py: Bridging the Gap between LLMs and Constraint Solvers

Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral

February 27, 2025

February 07, 2025

RESEARCH

SPEECH & AUDIO

Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu

February 07, 2025

February 06, 2025

RESEARCH

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

RESEARCH

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.