RESEARCH

NLP

Probing Linguistic Systematicity

June 30, 2020

Abstract

Recently, there has been much interest in the question of whether deep natural language understanding models exhibit systematicity---generalizing such that units like words make consistent contributions to the meaning of the sentences in which they appear. There is accumulating evidence that neural models often generalize non-systematically. We examined the notion of systematicity from a linguistic perspective, defining a set of probes and a set of metrics to measure systematic behaviour. We also identified ways in which network architectures can generalize non-systematically, and discuss why such forms of generalization may be unsatisfying. As a case study, we performed a series of experiments in the setting of natural language inference (NLI), demonstrating that some NLU systems achieve high overall performance despite being non-systematic.

Download the Paper

AUTHORS

Written by

Koustuv Sinha

Emily Goodwin

Timothy J O'Donell

Publisher

ACL

Related Publications

December 17, 2024

NLP

FLAME : Factuality-Aware Alignment for Large Language Models

Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen

December 17, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.