RESEARCH

Probabilistic Planning with Reduced Models

June 01, 2019

Abstract

Reduced models are simplified versions of a given domain, designed to accelerate the planning process. Interest in reduced models has grown since the surprising success of determinization in the first international probabilistic planning competition, leading to the development of several enhanced determinization techniques. To address the drawbacks of previous determinization methods, we introduce a family of reduced models in which probabilistic outcomes are classified as one of two types: primary and exceptional. In each model that belongs to this family of reductions, primary outcomes can occur an unbounded number of times per trajectory, while exceptions can occur at most a finite number of times, specified by a parameter. Distinct reduced models are characterized by two parameters: the maximum number of primary outcomes per action, and the maximum number of occurrences of exceptions per trajectory. This family of reductions generalizes the well-known most-likely-outcome determinization approach, which includes one primary outcome per action and zero exceptional outcomes per plan. We present a framework to determine the benefits of planning with reduced models, and develop a continual planning approach that handles situations where the number of exceptions exceeds the specified bound during plan execution. Using this framework, we compare the performance of various reduced models and consider the challenge of generating good ones automatically. We show that each one of the dimensions---allowing more than one primary outcome or planning for some limited number of exceptions---could improve performance relative to standard determinization. The results place previous work on determinization in a broader context and lay the foundation for a systematic exploration of the space of model reductions.

Download the Paper

AUTHORS

Written by

Luis Pineda

Shlomo Zilberstein

Publisher

JAIR

Related Publications

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

June 11, 2025

ROBOTICS

RESEARCH

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 11, 2025

May 14, 2025

RESEARCH

CORE MACHINE LEARNING

UMA: A Family of Universal Models for Atoms

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick

May 14, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.