December 19, 2014
We are interested in improving the quality and coverage of a knowledge graph through crowdsourcing features built into a social networking service. In this setting, most participants are casual users, making only a few contributions, and do so incidentally in the course of using the service. Techniques that make assumptions about the matching of users to questions, or the number of answers per user or per question do not work well under such circumstances.
We present an approach to model user trust when prior history is lacking, so that we can incorporate more new users’ contributions into crowdsourced decisions, and provide quicker feedback to new participants. Specifically, we present a logistic regression classifier for first-time contributions, and study the effect of prior knowledge about user demographics on this classifier using Facebook crowdsourcing datasets.
Written by
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models