RESEARCH

NLP

Pre-training via Paraphrasing

December 06, 2020

Abstract

We introduce MARGE, a pre-trained sequence-to-sequence model learned with an unsupervised multi-lingual multi-document paraphrasing objective. MARGE provides an alternative to the dominant masked language modeling paradigm, where we self-supervise the reconstruction of target text by retrieving a set of related texts (in many languages) and conditioning on them to maximize the likelihood of generating the original. We show it is possible to jointly learn to do retrieval and reconstruction, given only a random initialization. The objective noisily captures aspects of paraphrase, translation, multi-document summarization, and information retrieval, allowing for strong zero-shot performance on several tasks. For example, with no additional task-specific training we achieve BLEU scores of up to 35.8 for document translation. We further show that fine-tuning gives strong performance on a range of discriminative and generative tasks in many languages, making MARGE the most generally applicable pre-training method to date.

Download the Paper

AUTHORS

Written by

Michael Lewis

Armen Aghajanyan

Gargi Ghosh

Luke Zettlemoyer

Marjan Ghazvininejad

Sida Wang

Publisher

NeurIPS

Related Publications

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

August 20, 2024

CONVERSATIONAL AI

NLP

Lumos : Empowering Multimodal LLMs with Scene Text Recognition

Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar

August 20, 2024

August 11, 2024

NLP

LM Transparency Tool: Interactive Tool for Analyzing Transformer Language Models

Igor Tufanov, Karen Hambardzumyan, Javier Ferrando, Lena Voita

August 11, 2024

August 11, 2024

NLP

MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector

Marta R. Costa-jussa, Mariano Coria Meglioli, Pierre Andrews, David Dale, Kae Hansanti, Elahe Kalbassi, Christophe Ropers, Carleigh Wood

August 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.