Research

Computer Vision

Population Density Estimation with Deconvolutional Neural Networks

December 6, 2016

Abstract

This work is part of the Internet.org initiative to provide connectivity all over the world. Population density data is helpful in driving a variety of technology decisions, but currently, a microscopic dataset of population doesn’t exist. Current state of the art population density datasets are at ~1000km2 resolution. To create a better dataset, we have obtained 1PB of satellite imagery at 50cm/pixel resolution to feed through our building classification pipeline.

Our contribution is a fast building classification pipeline, that can run through a country in 8 hours on Facebook infrastructure. It is composed of an edge detection method for fast bounding box proposals, and a weakly supervised deconvolutional neural network that is trained for pixel-level classification, then mean pooled over the bounding box to output a probability of a building or buildings present in the bounding box. We train a global model and obtain precision and recall of > 90% in most countries. Countries with poorer results we use active learning techniques to re-sample data and fine-tune a new model. We also developed a weakly supervised footprint segmentation model that processes larger images with more context and produces a mask of location and shape of each building and a denoising network to clean up poorer quality source data.

Download the Paper

Related Publications

October 18, 2025

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 18, 2025

September 23, 2025

NLP

MetaEmbed: Scaling Multimodal Retrieval at Test-Time with Flexible Late Interactions

Zilin Xiao, Qi Ma, Mengting Gu, Jason Chen, Xintao Chen, Vicente Ordonez, Vijai Mohan

September 23, 2025

August 14, 2025

Computer Vision

DINOv3

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose, Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Theo Moutakanni, Leonel Sentana, Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Herve Jegou, Patrick Labatut, Piotr Bojanowski

August 14, 2025

August 13, 2025

Human & Machine Intelligence

Disentangling the Factors of Convergence between Brains and Computer Vision Models

Josephine Raugel, Marc Szafraniec, Huy V. Vo, Camille Couprie, Patrick Labatut, Piotr Bojanowski, Valentin Wyart, Jean Remi King

August 13, 2025

June 11, 2019

Computer Vision

ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero | Facebook AI Research

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, Larry Zitnick

June 11, 2019

April 30, 2018

NLP

Computer Vision

Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent | Facebook AI Research

Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller, Arthur Szlam, Douwe Kiela, Jason Weston

April 30, 2018

October 10, 2016

Speech & Audio

Computer Vision

Polysemous Codes | Facebook AI Research

Matthijs Douze, Hervé Jégou, Florent Perronnin

October 10, 2016

June 18, 2018

Speech & Audio

Computer Vision

Low-shot learning with large-scale diffusion | Facebook AI Research

Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou

June 18, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.