December 06, 2023
Entity linking methods based on dense retrieval are widely adopted in large-scale applications for their efficiency, but they can fall short of generative models, as they are sensitive to the structure of the embedding space. To address this issue, this paper introduces DUCK, an approach to infusing structural information in the space of entity representations, using prior knowledge of entity types. Inspired by duck typing in programming languages, we define the type of an entity based on its relations with other entities in a knowledge graph. Then, porting the concept of box embeddings to spherical polar coordinates, we represent relations as boxes on the hypersphere. We optimize the model to place entities inside the boxes corresponding to their relations, thereby clustering together entities of similar type. Our experiments show that our method sets new state-of-the-art results on standard entity-disambiguation benchmarks. It improves the performance of the model by up to 7.9 F1 points, outperforms other type-aware approaches, and matches the results of generative models with 18 times more parameters.
Written by
Mattia Atzeni
Mike Plekhanov
Frederic Dreyer
Nora Kassner
Simone Merello
Louis Martin
Publisher
EMNLP
Research Topics
December 17, 2024
Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen
December 17, 2024
December 12, 2024
December 12, 2024
December 12, 2024
Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer
December 12, 2024
December 12, 2024
Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz
December 12, 2024
Foundational models
Latest news
Foundational models