December 4, 2017
Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, state-of-the-art embedding methods typically do not account for latent hierarchical structures which are characteristic for many complex symbolic datasets. In this work, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space – or more precisely into an n-dimensional Poincaré ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We present an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincaré embeddings can outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.
Research Topics
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models