ROBOTICS

REINFORCEMENT LEARNING

PIRLNav: Pretraining with Imitation and RL Finetuning for ObjectNav

March 31, 2023

Abstract

We study ObjectGoal Navigation -- where a virtual robot situated in a new environment is asked to navigate to an object. Prior work has shown that imitation learning (IL) using behavior cloning (BC) on a dataset of human demonstrations achieves promising results. However, this has limitations -- 1) BC policies generalize poorly to new states, since the training mimics actions not their consequences, and 2) collecting demonstrations is expensive. On the other hand, reinforcement learning (RL) is trivially scalable, but requires careful reward engineering to achieve desirable behavior. We present PIRLNav, a two-stage learning scheme for BC pretraining on human demonstrations followed by RL-finetuning. This leads to a policy that achieves a success rate of 65.0% on ObjectNav (+5.0% absolute over previous state-of-the-art). Using this BC→RL training recipe, we present a rigorous empirical analysis of design choices. First, we investigate whether human demonstrations can be replaced with `free' (automatically generated) sources of demonstrations, e.g. shortest paths (SP) or task-agnostic frontier exploration (FE) trajectories. We find that BC→RL on human demonstrations outperforms BC→RL on SP and FE trajectories, even when controlled for same BC-pretraining success on train, and even on a subset of val episodes where BC-pretraining success favors the SP or FE policies. Next, we study how RL-finetuning performance scales with the size of the BC pretraining dataset. We find that as we increase the size of BC-pretraining dataset and get to high BC accuracies, improvements from RL-finetuning are smaller, and that 90% of the performance of our best BC→RL policy can be achieved with less than half the number of BC demonstrations. Finally, we analyze failure modes of our ObjectNav policies, and present guidelines for further improving them.

Download the Paper

AUTHORS

Written by

Ram Ramrakhya

Dhruv Batra

Erik Wijmans

Abhishek Das

Publisher

CVPR

Related Publications

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 30, 2024

REINFORCEMENT LEARNING

Multi-Agent Diagnostics for Robustness via Illuminated Diversity

Mikayel Samvelyan, Minqi Jiang, Davide Paglieri, Jack Parker-Holder, Tim Rocktäschel

April 30, 2024

April 02, 2024

ROBOTICS

REINFORCEMENT LEARNING

MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar

April 02, 2024

March 26, 2024

ROBOTICS

REINFORCEMENT LEARNING

When should we prefer Decision Transformers for Offline Reinforcement Learning?

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, Amy Zhang

March 26, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.