ROBOTICS

REINFORCEMENT LEARNING

PIRLNav: Pretraining with Imitation and RL Finetuning for ObjectNav

March 31, 2023

Abstract

We study ObjectGoal Navigation -- where a virtual robot situated in a new environment is asked to navigate to an object. Prior work has shown that imitation learning (IL) using behavior cloning (BC) on a dataset of human demonstrations achieves promising results. However, this has limitations -- 1) BC policies generalize poorly to new states, since the training mimics actions not their consequences, and 2) collecting demonstrations is expensive. On the other hand, reinforcement learning (RL) is trivially scalable, but requires careful reward engineering to achieve desirable behavior. We present PIRLNav, a two-stage learning scheme for BC pretraining on human demonstrations followed by RL-finetuning. This leads to a policy that achieves a success rate of 65.0% on ObjectNav (+5.0% absolute over previous state-of-the-art). Using this BC→RL training recipe, we present a rigorous empirical analysis of design choices. First, we investigate whether human demonstrations can be replaced with `free' (automatically generated) sources of demonstrations, e.g. shortest paths (SP) or task-agnostic frontier exploration (FE) trajectories. We find that BC→RL on human demonstrations outperforms BC→RL on SP and FE trajectories, even when controlled for same BC-pretraining success on train, and even on a subset of val episodes where BC-pretraining success favors the SP or FE policies. Next, we study how RL-finetuning performance scales with the size of the BC pretraining dataset. We find that as we increase the size of BC-pretraining dataset and get to high BC accuracies, improvements from RL-finetuning are smaller, and that 90% of the performance of our best BC→RL policy can be achieved with less than half the number of BC demonstrations. Finally, we analyze failure modes of our ObjectNav policies, and present guidelines for further improving them.

Download the Paper

AUTHORS

Written by

Ram Ramrakhya

Dhruv Batra

Erik Wijmans

Abhishek Das

Publisher

CVPR

Related Publications

October 31, 2024

HUMAN & MACHINE INTELLIGENCE

ROBOTICS

Digitizing Touch with an Artificial Multimodal Fingertip

Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra

October 31, 2024

October 31, 2024

ROBOTICS

PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks

Matthew Chang, Gunjan Chhablani, Alexander William Clegg, Mikael Dallaire Cote, Ruta Desai, Michal Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth Patki, Ishita Prasad, Xavi Puig, Akshara Rai, Ram Ramrakhya, Daniel Tran, Joanne Truong, John Turner, Eric Undersander, Jimmy Yang

October 31, 2024

October 31, 2024

ROBOTICS

Sparsh: Self-supervised touch representations for vision-based tactile sensing

Carolina Higuera, Akash Sharma, Krishna Bodduluri, Taosha Fan, Patrick Lancaster, Mrinal Kalakrishnan, Michael Kaess, Byron Boots, Mike Lambeta, Tingfan Wu, Mustafa Mukadam

October 31, 2024

August 16, 2024

THEORY

REINFORCEMENT LEARNING

Dual Approximation Policy Optimization

Zhihan Xiong, Maryam Fazel, Lin Xiao

August 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.