September 10, 2023
We present a novel motion prior, called PhaseMP, modeling a probability distribution on pose transitions conditioned by a frequency domain feature extracted from a periodic autoencoder. The phase feature further enforces the pose transitions to be unidirectional (i.e. no backward movement in time), from which more stable and natural motions can be generated. Specifically, our motion prior can be useful for accurately estimating 3D human motions in the presence of challenging input data, including long periods of spatial and temporal occlusion, as well as noisy sensor measurements. Through a comprehensive evaluation, we demonstrate the efficacy of our novel motion prior, showcasing its superiority over existing state-of-the-art methods by a significant margin across various applications, including video-to-motion and motion estimation from sparse sensor data, and etc.
Written by
Yuting Ye
Sebastian Starke
Jungdam Won
Mingyi Shi
Taku Komura
Publisher
ICCV
Research Topics
December 12, 2024
Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano
December 12, 2024
December 11, 2024
Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko
December 11, 2024
December 11, 2024
Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer
December 11, 2024
December 11, 2024
Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri
December 11, 2024
Foundational models
Latest news
Foundational models