July 15, 2018
Chit-chat models are known to have several problems: they lack specificity, do not display a consistent personality and are often not very captivating. In this work we present the task of making chit-chat more engaging by conditioning on profile information. We collect data and train models to (i) condition on their given profile information; and (ii) information about the person they are talking to, resulting in improved dialogues, as measured by next utterance prediction. Since (ii) is initially unknown, our model is trained to engage its partner with personal topics, and we show the resulting dialogue can be used to predict profile information about the interlocutors.
Publisher
ACL
Research Topics
May 14, 2025
Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick
May 14, 2025
May 14, 2025
Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King
May 14, 2025
May 13, 2025
Marlène Careil, Yohann Benchetrit, Jean-Rémi King
May 13, 2025
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
Our approach
Latest news
Foundational models