Research

Perceiving, Learning, and Exploiting Object Affordances for Autonomous Pile Manipulation

August 7, 2014

Abstract

Autonomous manipulation in unstructured environments will enable a large variety of exciting and important applications. Despite its promise, autonomous manipulation remains largely unsolved. Even the most rudimentary manipulation task—such as removing objects from a pile—remains challenging for robots. We identify three major challenges that must be addressed to enable autonomous manipulation: object segmentation, action selection, and motion generation. These challenges become more pronounced when unknown man-made or natural objects are cluttered together in a pile.We present a system capable of manipulating unknown objects in such an environment. Our robot is tasked with clearing a table by removing objects from a pile and placing them into a bin. To that end, we address the three aforementioned challenges. Our robot perceives the environment with an RGB-D sensor, segmenting the pile into object hypotheses using non-parametric surface models. Our system then computes the affordances of each object, and selects the best affordance and its associated action to execute. Finally, our robot instantiates the proper compliant motion primitive to safely execute the desired action. For efficient and reliable action selection, we developed a framework for supervised learning of manipulation expertise.To verify the performance of our system, we conducted dozens of trials and report on several hours of experiments involving more than 1,500 interactions. The results show that our learning-based approach for pile manipulation outperforms a common sense heuristic as well as a random strategy, and is on par with human action selection.

Download the Paper

Related Publications

June 27, 2025

Human & Machine Intelligence

Conversational AI

Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset

Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, Praveen Chowdary, Joe Chuang, Antony D'Avirro, Jon Daly, Ning Dong, Mark Duppenthaler, Cynthia Gao, Jeff Girard, Martin Gleize, Sahir Gomez, Hongyu Gong, Srivathsan Govindarajan, Brandon Han, Sen He, Denise Hernandez, Yordan Hristov, Rongjie Huang, Hirofumi Inaguma, Somya Jain, Raj Janardhan, Qingyao Jia, Christopher Klaiber, Dejan Kovachev, Moneish Kumar, Hang Li, Yilei Li, Pavel Litvin, Wei Liu, Guangyao Ma, Jing Ma, Martin Ma, Xutai Ma, Lucas Mantovani, Sagar Miglani, Sreyas Mohan, Louis-Philippe Morency, Evonne Ng, Kam-Woh Ng, Tu Anh Nguyen, Amia Oberai, Benjamin Peloquin, Juan Pino, Jovan Popovic, Omid Poursaeed, Fabian Prada, Alice Rakotoarison, Alexander Richard, Christophe Ropers, Safiyyah Saleem, Vasu Sharma, Alex Shcherbyna, Jie Shen, Anastasis Stathopoulos, Anna Sun, Paden Tomasello, Tuan Tran, Arina Turkatenko, Bo Wan, Chao Wang, Jeff Wang, Mary Williamson, Carleigh Wood, Tao Xiang, Yilin Yang, Zhiyuan Yao, Chen Zhang, Jiemin Zhang, Xinyue Zhang, Jason Zheng, Pavlo Zhyzheria, Jan Zikes, Michael Zollhoefer

June 27, 2025

June 13, 2025

Fairness

Integrity

Measuring multi-calibration

Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert

June 13, 2025

June 11, 2025

Computer Vision

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 10, 2025

Computer Vision

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 10, 2025

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.