Research

Perceiving, Learning, and Exploiting Object Affordances for Autonomous Pile Manipulation

August 7, 2014

Abstract

Autonomous manipulation in unstructured environments will enable a large variety of exciting and important applications. Despite its promise, autonomous manipulation remains largely unsolved. Even the most rudimentary manipulation task—such as removing objects from a pile—remains challenging for robots. We identify three major challenges that must be addressed to enable autonomous manipulation: object segmentation, action selection, and motion generation. These challenges become more pronounced when unknown man-made or natural objects are cluttered together in a pile.We present a system capable of manipulating unknown objects in such an environment. Our robot is tasked with clearing a table by removing objects from a pile and placing them into a bin. To that end, we address the three aforementioned challenges. Our robot perceives the environment with an RGB-D sensor, segmenting the pile into object hypotheses using non-parametric surface models. Our system then computes the affordances of each object, and selects the best affordance and its associated action to execute. Finally, our robot instantiates the proper compliant motion primitive to safely execute the desired action. For efficient and reliable action selection, we developed a framework for supervised learning of manipulation expertise.To verify the performance of our system, we conducted dozens of trials and report on several hours of experiments involving more than 1,500 interactions. The results show that our learning-based approach for pile manipulation outperforms a common sense heuristic as well as a random strategy, and is on par with human action selection.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.