RESEARCH

SPEECH & AUDIO

Pay less attention with Lightweight and Dynamic Convolutions

April 19, 2019

Abstract

Self-attention is a useful mechanism to build generative models for language and images. It determines the importance of context elements by comparing each element to the current time step. In this paper, we show that a very lightweight convolution can perform competitively to the best reported self-attention results. Next, we introduce dynamic convolutions which are simpler and more efficient than self-attention. We predict separate convolution kernels based solely on the current time-step in order to determine the importance of context elements. The number of operations required by this approach scales linearly in the input length, whereas self-attention is quadratic. Experiments on large-scale machine translation, language modeling and abstractive summarization show that dynamic convolutions improve over strong self-attention models. On the WMT'14 English-German test set dynamic convolutions achieve a new state of the art of 29.7 BLEU.

Download the Paper

Related Publications

November 30, 2023

SPEECH & AUDIO

NLP

Efficient Monotonic Multihead Attention

Xutai Ma, Anna Sun, Hirofumi Inaguma, Paden Tomasello, Siqi Ouyang

November 30, 2023

November 30, 2023

SPEECH & AUDIO

NLP

Seamless: Multilingual Expressive and Streaming Speech Translation

Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonzalez, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-jussà, Maha Elbayad, Hongyu Gong, Francisco Guzmán, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alexandre Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson

November 30, 2023

October 04, 2023

HUMAN & MACHINE INTELLIGENCE

SPEECH & AUDIO

Decoding speech perception from non-invasive brain recordings

Alexandre Defossez, Charlotte Caucheteux, Jérémy Rapin, Ori Kabeli, Jean Remi King

October 04, 2023

August 22, 2023

SPEECH & AUDIO

NLP

SeamlessM4T—Massively Multilingual & Multimodal Machine Translation

Seamless Communication, Loic Barrault, Andy Chung, David Dale, Ning Dong (AI), Paul-Ambroise Duquenne, Hady Elsahar, Hongyu Gong, Kevin Heffernan, John Hoffman, Christopher Klaiber, Peng-Jen Chen, Daniel Licht, Jean Maillard, Alice Rakotoarison, Kaushik Ram Sadagopan, Guillaume Wenzek, Abinesh Ramakrishnan, Alexandre Mourachko, Amanda Kallet, Ann Lee, Anna Sun, Bapi Akula, Benjamin Peloquin, Bernie Huang, Bokai Yu, Brian Ellis, Can Balioglu, Carleigh Wood, Changhan Wang, Christophe Ropers, Cynthia Gao, Daniel Li (FAIR), Elahe Kalbassi, Ethan Ye, Gabriel Mejia Gonzalez, Hirofumi Inaguma, Holger Schwenk, Igor Tufanov, Ilia Kulikov, Janice Lam, Jeff Wang (PM - AI), Juan Pino, Justin Haaheim, Justine Kao, Prangthip Hasanti, Kevin Tran, Maha Elbayad, Marta R. Costa-jussa, Mohamed Ramadan, Naji El Hachem, Onur Çelebi, Paco Guzmán, Paden Tomasello, Pengwei Li, Pierre Andrews, Ruslan Mavlyutov, Russ Howes, Safiyyah Saleem, Skyler Wang, Somya Jain, Sravya Popuri, Tuan Tran, Vish Vogeti, Xutai Ma, Yilin Yang

August 22, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.