NLP

Pay Better Attention to Attention: Head Selection in Multilingual and Multi-Domain Sequence Modeling

December 06, 2021

Abstract

Multi-head attention has each of the attention heads collect salient information from different parts of an input sequence, making it a powerful mechanism for sequence modeling. Multilingual and multi-domain learning are common scenarios for sequence modeling, where the key challenge is to maximize positive transfer and mitigate negative interference across languages and domains. In this paper, we find that non-selective attention sharing is sub-optimal for achieving good generalization across all languages and domains. We further propose attention sharing strategies to facilitate parameter sharing and specialization in multilingual and multi-domain sequence modeling. Our approach automatically learns shared and specialized attention heads for different languages and domains. Evaluated in various tasks including speech recognition, text-to-text and speech-to-text translation, the proposed attention sharing strategies consistently bring gains to sequence models built upon multi-head attention. For speech-to-text translation, our approach yields an average of $+2.0$ BLEU over $13$ language directions in multilingual setting and $+2.0$ BLEU over $3$ domains in multi-domain setting.

Download the Paper

AUTHORS

Written by

Hongyu Gong

Yun Tang

Juan Pino

Xian Li

Publisher

NeurIPS

Related Publications

May 14, 2025

HUMAN & MACHINE INTELLIGENCE

SPEECH & AUDIO

Emergence of Language in the Developing Brain

Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King

May 14, 2025

April 25, 2025

RESEARCH

NLP

ReasonIR: Training Retrievers for Reasoning Tasks

Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer

April 25, 2025

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 04, 2025

NLP

CORE MACHINE LEARNING

Multi-Token Attention

Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar

April 04, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.