Research

Computer Vision

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality

April 14, 2020

Abstract

We present an end-to-end system for real-time environment capture, 3D reconstruction, and stereoscopic view synthesis on a mobile VR headset. Our solution allows the user to use the cameras on their VR headset as their eyes to see and interact with the real world while still wearing their headset, a feature often referred to as Passthrough. The central challenge when building such a system is the choice and implementation of algorithms under the strict compute, power, and performance constraints imposed by the target user experience and mobile platform. A key contribution of this paper is a complete description of a corresponding system that performs temporally stable passthrough rendering at 72 Hz with only 200 mW power consumption on a mobile Snapdragon 835 platform. Our algorithmic contributions for enabling this performance include the computation of a coarse 3D scene proxy on the embedded video encoding hardware, followed by a depth densification and filtering step, and finally stereoscopic texturing and spatio-temporal up-sampling. We provide a detailed discussion and evaluation of the challenges we encountered, and algorithm and performance trade-offs in terms of compute and resulting passthrough quality. The described system is available to users as the Passthrough+ feature on Oculus Quest. We believe that by publishing the underlying system and methods, we provide valuable insights to the community on how to design and implement real-time environment sensing on heavily resource constrained hardware.

Download the Paper

AUTHORS

Written by

Gaurav Chaurasia

Arthur Nieuwoudt

Alexandru-Eugen Ichim

Richard Szeliski

Alexander Sorkine-Hornung

Publisher

Association for Computing Machinery (ACM)

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.