April 30, 2018
Generative modeling of high dimensional data like images is a notoriously difficult and ill-defined problem. In particular, how to evaluate a learned generative model is unclear. In this paper, we argue that adversarial learning, pioneered with generative adversarial networks (GANs), provides an interesting framework to implicitly define more meaningful task losses for unsupervised tasks, such as for generating “visually realistic” images. By relating GANs and structured prediction under the framework of statistical decision theory, we put into light links between recent advances in structured prediction theory and the choice of the divergence in GANs. We argue that the insights about the notions of “hard” and “easy” to learn losses can be analogously extended to adversarial divergences. We also discuss the attractive properties of parametric adversarial divergences for generative modeling, and perform experiments to show the importance of choosing a divergence that reflects the final task.
Research Topics
June 27, 2025
Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, Praveen Chowdary, Joe Chuang, Antony D'Avirro, Jon Daly, Ning Dong, Mark Duppenthaler, Cynthia Gao, Jeff Girard, Martin Gleize, Sahir Gomez, Hongyu Gong, Srivathsan Govindarajan, Brandon Han, Sen He, Denise Hernandez, Yordan Hristov, Rongjie Huang, Hirofumi Inaguma, Somya Jain, Raj Janardhan, Qingyao Jia, Christopher Klaiber, Dejan Kovachev, Moneish Kumar, Hang Li, Yilei Li, Pavel Litvin, Wei Liu, Guangyao Ma, Jing Ma, Martin Ma, Xutai Ma, Lucas Mantovani, Sagar Miglani, Sreyas Mohan, Louis-Philippe Morency, Evonne Ng, Kam-Woh Ng, Tu Anh Nguyen, Amia Oberai, Benjamin Peloquin, Juan Pino, Jovan Popovic, Omid Poursaeed, Fabian Prada, Alice Rakotoarison, Alexander Richard, Christophe Ropers, Safiyyah Saleem, Vasu Sharma, Alex Shcherbyna, Jie Shen, Anastasis Stathopoulos, Anna Sun, Paden Tomasello, Tuan Tran, Arina Turkatenko, Bo Wan, Chao Wang, Jeff Wang, Mary Williamson, Carleigh Wood, Tao Xiang, Yilin Yang, Zhiyuan Yao, Chen Zhang, Jiemin Zhang, Xinyue Zhang, Jason Zheng, Pavlo Zhyzheria, Jan Zikes, Michael Zollhoefer
June 27, 2025
February 06, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 06, 2025
November 19, 2020
Angela Fan, Aleksandra Piktus, Antoine Bordes, Fabio Petroni, Guillaume Wenzek, Marzieh Saeidi, Sebastian Riedel, Andreas Vlachos
November 19, 2020
November 09, 2020
Angela Fan
November 09, 2020
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
April 30, 2018
Yaniv Taigman, Lior Wolf, Adam Polyak, Eliya Nachmani
April 30, 2018
July 11, 2018
Eliya Nachmani, Adam Polyak, Yaniv Taigman, Lior Wolf
July 11, 2018
Our approach
Latest news
Foundational models