NLP

ML Applications

Parallel Machine Translation with Disentangled Context Transformer

July 15, 2020

Abstract

State-of-the-art neural machine translation models generate a translation from left to right and every step is conditioned on the previously generated tokens. The sequential nature of this generation process causes fundamental latency in inference since we cannot generate multiple tokens in each sentence in parallel. We propose an attention-masking based model, called Disentangled Context (DisCo) transformer, that simultaneously generates all tokens given different contexts. The DisCo transformer is trained to predict every output token given an arbitrary subset of the other reference tokens. We also develop the parallel easy-first inference algorithm, which iteratively refines every token in parallel and reduces the number of required iterations. Our extensive experiments on 7 translation directions with varying data sizes demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in nonautoregressive machine translation while significantly reducing decoding time on average. Our code is avaiable at https://github.com/facebookresearch/DisCo.

Download the Paper

AUTHORS

Written by

Jungo Kasai

James Cross

Marjan Ghazvininejad

Jiatao Gu

Publisher

International Conference on Machine Learning (ICML)

Related Publications

February 06, 2025

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

June 26, 2020

NLP

Computer Vision

ShadowSync: Performing Synchronization in the Background for Highly Scalable Distributed Training

Qinqing Zheng, Bor-Yiing Su, Jiyan Yang, Alisson Azzolini, Qiang Wu, Ou Jin, Shri Karandikar, Hagay Lupesko, Liang Xiong, Eric Zhou

June 26, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.