April 15, 2019
We address the problem of finding an optimal policy in a Markov decision process under a restricted policy class defined by the convex hull of a set of base policies. This problem is of great interest in applications in which a number of reasonably good (or safe) policies are already known and we are interested in optimizing in their convex hull. We first prove that solving this problem is NP-hard. We then propose an efficient algorithm that finds a policy whose performance is almost as good as that of the best convex combination of the base policies, under the assumption that the occupancy measures of the base policies have a large overlap. The running time of the proposed algorithm is linear in the number of states and polynomial in the number of base policies. A distinct advantage of the proposed algorithm is that, apart from the computation of the occupancy measures of the base policies, it does not need to interact with the environment during the optimization process. This is especially important (i) in problems that due to concerns such as safety, we are restricted in interacting with the environment only through the (safe) base policies, and (ii) in complex systems where estimating the value of a policy can be a time consuming process.
Publisher
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models