May 11, 2020
Nevergrad is a derivative-free optimization platform gathering both a wide range of optimization methods and a wide range of test functions to evaluate them upon. Some of these functions have very particular structures which standard methods are not able to use. The most recent feature of Nevergrad is the ability to conveniently define a search domain, so that many algorithms in Nevergrad can automatically rescale variables and/or take into account their possibly logarithmic nature or their discrete nature, but also take into account any user-defined mutation or recombination operator. Since many problems are efficiently solved using specific operators, Nevergrad therefore now enables using specific operators within generic algorithms: the underlying structure of the problem is user-defined information that several families of optimization methods can use and benefit upon. We explain how this API can help analyze optimization methods and how to use it for the optimization of a structured Photonics physical testbed, and show that this can produce significant improvements.
Written by
Jérémy Rapin
Daniel Haziza
Olivier Teytaud
Antoine Moreau
Emmanuel Centeno
Pauline Bennet
Publisher
Evolutionary Computation Software Systems Workshop at GECCO
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
November 28, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 28, 2022
Foundational models
Our approach
Latest news
Foundational models