October 26, 2020
We conduct in this work an evaluation study comparing offline and online neural machine translation architectures. Two sequence-to-sequence models: convolutional Pervasive Attention (Elbayad et al., 2018) and attention-based Transformer (Vaswani et al., 2017) are considered. We investigate, for both architectures, the impact of online decoding constraints on the translation quality through a carefully designed human evaluation on English-German and German-English language pairs, the latter being particularly sensitive to latency constraints. The evaluation results allow us to identify the strengths and shortcomings of each model when we shift to the online setup.
Written by
Jakob Verbeek
Emmanuelle Esperança-Rodier
Francis Brunet Manquat
Laurent Besacier
Maha Elbayad
Michael Ustaszewski
Publisher
COLING
January 04, 2025
January 04, 2025
December 17, 2024
Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen
December 17, 2024
December 12, 2024
December 12, 2024
December 12, 2024
Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer
December 12, 2024
Foundational models
Latest news
Foundational models